

Current Sensor

Model Number

CM4A 1000 H06

For the electronic measurement of current: DC, AC, pulsed..., with galvanic insulation between the primary and the secondary circuits.

Features

- Closed loop (compensated) current sensor using the Hall Effect
- \diamond Galvanic insulation between primary and secondary
- \diamond Insulating plastic case recognized according to UL 94-V0
- \diamond Very good linearity
- \diamondsuit High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:
 - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

- AC variable speed and servo motor drives
- Uninterruptible Power Supplies (UPS)
- \diamond Static converters for DC motor drives
- \diamondsuit Switch Mode Power Supplies (SMPS)
- Power supplies for welding applications
- Battery management \diamond
- \diamondsuit Wind energy inverter
- Test and detection devices

Safety

This sensor must be used according to IEC 61800-5-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	Vc	V	± 25.2
Primary conductor temperature	T B	$^{\circ}$ C	100
ESD rating, Human Body Model (HBM)	V _{ESD}	kV	4

X Stresses above these ratings may cause permanent damage.

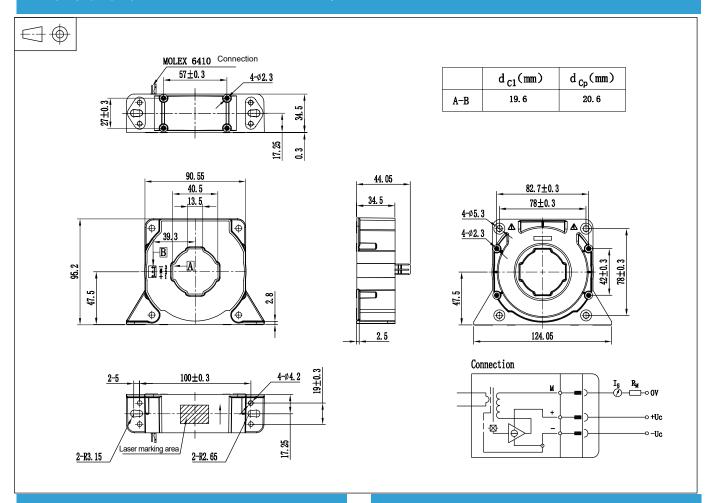
Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	<i>T</i> A	$^{\circ}$	-40		85	
Ambient storage temperature	<i>T</i> s	$^{\circ}$	-40		90	
Mass	m	g		525		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test @ 50Hz,1min	$V_{ m d}$	kV	3.8	According to IEC 60664-1
Impulse withstand voltage 1.2/50μs	V _W	kV	16	According to IEC 60664-1
Clearance (pri sec.)	d cı	mm	19.6	
Creepage distance (pri sec.)	d Cp	mm	20.6	
Plastic case	-	ı	UL94-V0	
Comparative traking index	СТІ	PLC	3	
Application example	1	1	1000V	Reinforced insulation,according to IEC 61800-5-1, IEC 62109-1CATIII, PD2
Application example	-	-	2000V	Basic insulation,according to IEC 61800-5-1, IEC 62109-1CATIII, PD2

^{*} Exposure to absolute maximum ratings for extended periods may degrade reliability.


Electrical data

 \aleph With T_A = 25 °C, V_C = ±24V, R_M = 20Ω,unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	/ PN	Α	-1000		1000	
Primary current, measuring range	/ PM	Α	-2700		2700	
Measuring resistance	R_{M}	Ω	0		27	@±15V, 85℃, ±1000A
			0		5	@±15V, 85℃, ±1500A
			0		70	@±24V, 85℃, ±1000A
			0		1	@±24V, 85℃, ±2700A
Secondary nominal rms current	/ _{SN}	mA	-200		200	
Secondary coil resistance	R s	Ω			30.9	@ 25 ℃
Gecondary con resistance					40.2	@ 85℃
Secondary current,measuring range	<i>I</i> s	mA	-540		540	
Number of secondary turns	N s	-		5000		
Theoretical sensitivity	G_{th}	mA/A		0.2		
Supply voltage	V c	٧	±15		±24	@ ±5%
Current consumption	<i>l</i> c	mA		28 + /s		
Zero offset current	ю	mA	-0.2		0.2	
Thermal drift of offset current	/ от	mA	-0.6		0.6	@ -40℃~85℃
Residual current@ I _P =0 after I _{PN}	/ ом	mA	-0.1		0.1	
Sensitivity error	$\mathcal{E}_{ ext{G}}$	%	-0.2		0.2	Exclusive of I _{OE}
Linearity error 0I _{PN}	\mathcal{E}_{L}	% of Æ _N	-0.1		0.1	Exclusive of I _{OE}
Accuracy@ I _{PN}	Χ	% of In	-0.3		0.3	Exclusive of I _{OE}
Response time@ 90% of I _{PN}	<i>t</i> r	μs		0.5	1	
Frequency bandwidth(-3dB)	BW	kHz	150			

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- ♦ General tolerance
- Primary hole or

±0.5mm Ф38mm or 40 mm x 13 mm

Transducer vertical fastening
 2pc Φ5.3mm through-hole
 2pc M5 metal across

2pc M5 metal screws

Recommended fastening torque or

1.2 N•m (±10%)4pc Φ4.2 mm through-hole4pc M4 metal screws

Recommended fastening torque 0.9 N•m (±10%)

♦ Connection of secondary

Transducer horizontal fastening

Molex 6410

4pc Φ5.3mm through-hole 4pc M5 metal screws

Recommended fastening torque

1.2 N•m (±10%)

Remarks

- \Leftrightarrow $I_{\rm S}$ and $I_{\rm P}$ are in the same direction, when $I_{\rm P}$ flows in the direction of arrow.
- → Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time)are best with a single bar completely filling the primary hole.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.